Общее·количество·просмотров·страницы

четверг, 1 августа 2019 г.

ПЬЕЗОФОРСУНКИ BOSCH COMMON RAIL. ПРИНЦИП РАБОТЫ, КОНСТРУКЦИЯ.


С момента своего появления в серийном производстве в 1997 году и до настоящего момента аккумуляторные топливные системы Common Rail (СR) находятся в процессе постоянного конструктивного совершенствования. Причем, технический уровень топливной аппаратуры такого типа оценивается по техническому уровню применяемых в ней топливных форсунок.
В настоящее время фирмой Robert BOSCH ведется серийный выпуск уже третьего поколения топливной системы CR, отличительной особенностью которой является применение пьезоэлектрического преобразователя в цепи управления иглой форсунки. По данным фирмы BOSCH это позволило на 3% снизить расход топлива, выбросы вредных веществ с отработавшими газами снизились на 20 %, шум работы двигателя уменьшился на 3 дБ, на 7 % увеличилась мощность. Помимо этого, такая форсунка характеризуется наличием устойчивого многофазового впрыскивания топлива, минимальными порциями предварительного впрыскивания, возможностью короткого промежутка времени между предварительным и основным впрыскиванием и компактным конструктивным решением. Важно отметить также, что по сравнению с электромагнитной форсункой форсунка с пьезоприводом имеет меньший расход топлива на управление и, следовательно, обладает большим КПД.
Указанные преимущества пьезофорсунки достигнуты путем реализации в ней достаточно сложной гидравлической схемы, которая характеризуется наличием нескольких, связанных между собой и оказывающих взаимное влияние, гидродинамических каналов, полостей и динамических звеньев. Сложность конструкции определяет и сложную взаимосвязь процессов, происходящих в работающей форсунке. Это приводит к тому, что такая гидродинамическая система имеет узкий диапазон значений своих конструктивных параметров, которые определяют как оптимальную работу форсунки, так и её работоспособность в принципе. Именно сохранение набора значений этих параметров (длин, сечений каналов, объемов полостей, масс и жесткостей подвижных элементов и др.) является основной задачей при разработке технологии восстановительного ремонта электрогидравлических пьезофорсунок.
Основными составляющими частями пьезофорсунки CR BOSCH являются пьезоэлектрический преобразователь (пьезоэлемент), гидравлическая передача (гидрокомпенсатор), управляющий клапан с дроссельной пластинкой и распылитель которые собраны в едином корпусе и затянуты гайкой.


В случае BOSCH пьезоэлектрический преобразователь состоит из 350 кварцевых пластинок толщиной 90 мкм, каждая из которых при подаче на неё напряжения постоянного тока удлиняется на 0,13 мкм. Максимальное удлинение пьзоэлемента составляет 45 мкм. Исходный размер пьезоэлемента восстанавливается при снятии напряжения с пластинок. Быстродействие описанного процесса в несколько раз выше, чем срабатывание якоря в электромагнитной форсунке.

Конструкция механической части пьезофорсунки CR BOSCH показана на рисунке ниже.





Движение иглы распылителя обеспечивается посредством срабатывания, т.е. открытия-закрытия управляющего клапана форсунки, а цикловая подача топлива регулируется продолжительностью нахождения клапана в открытом положении.
При отсутствии управляющего сигнала, пьезоэлектрический преобразователь находится в исходном сжатом положении и управляющий клапан закрыт. В такой ситуации, полости высокого и низкого давления форсунки разобщены. Игла распылителя поддерживается в закрытом положении за счет силы от давления топлива (равного давлению в рейке) и силы упругости пружины. Сила, удерживающая иголку в закрытом положении от давления топлива, возникает потому, что площадь торца иголки больше площади активного сечения иголки со стороны распыливающих отверстий. При подаче на форсунку управляющего сигнала напряжением 110…150 В, происходит удлинение пьезоэлектрического преобразователя и смещение вниз сердечника, или как его называют грибка (анкера) управляющего клапана. Клапан открывает отверстие и, давление в полости под грибком, равно как и в камере над торцем иглы распылителя падает. Сила давления топлива на активную площадку иглы распылителя снизу становится выше, чем сила давления топлива на верхний торец иголки и, под действием разности этих сил игла начинает подниматься, открывая распыливающие отверстия. При этом топливо, вытекающее в отверстие открытого управляющего клапана, поступает в дренажную полость (обратку). Для окончания впрыскивания происходит снятие напряжения на пьезоэлектрическом преобразователе, он сокращается, и грибок управляющего клапана перекрывает слив топлива в дренажную полость. Давление в полости над иглой распылителя увеличивается и она, перемещаясь вниз, закрывает сопловые отверстия распылителя.
Следует обратить внимание, что грибок клапана приводится в движение от пьезоэлемента не непосредственно, а через гидравлическую передачу (гидротолкатель) или как его называют гидрокомпенсатор. Назначение этой гидропередачи - компенсация температурного расширения цепи привода управляющего клапана в процессе работы форсунки, а также снижение динамических нагрузок на его детали. Помимо этого, за счет разности площадей штоков, взаимодействующих между собой через топливо, гидропередача увеличивает ход пьезоэлемента.


 
Тел. +375 29 6560658
E-mail: alekskrez@mail.ru

среда, 24 июля 2019 г.

РЕМОНТ СОВРЕМЕННЫХ РАСПЫЛИТЕЛЕЙ типа DLLA, DSLA



Рис. 1
Следует отметить, что современные распылители в том числе и распылители без упорного штифта типа DSLA150P191 (рис.1) и т.п. которые устанавливаются на двигателях легковых автомобилей TDI, CDI это не распылители 335-50 для МАЗ – Евро-2. Цена, качество, условия работы и как следствие характер и величина износа у них существенно разные. Потери гидравлической плотности, из-за износа направляющих цилиндрических поверхностей иголки и корпуса, у современных распылителей, не принимая во внимание нештатные ситуации, практически не происходит. В отличие от распылителей предыдущего поколения (http://reforsbel.blogspot.com/2011/11/blog-post_28.html) у названных распылителей изнашиваются практически только запорные конические поверхности на иголке (рис. 2) и в корпусе распылителя. Причина износа – кавитация, от которой в принципе избавиться невозможно. В результате разрушения поверхности металла линия контакта конусов, углы которых изначально имеют разное значение, становиться шире. Последнее приводит к уменьшению удельного давления иголки на корпус распылителя и увеличению гидравлического сопротивления току жидкости через распылитель. Как следствие, при работе форсунки солярка начинает вытекать из сопловых отверстий распылителя с меньшей скоростью и перестают дробиться на частицы при ударе о воздух, а также ухудшается отсечка подачи топлива. Иными словами распылитель начинает «лить», т.е. солярка в камеру сгорания поступает в виде струек и на носике распылителя при этом образуется «капля».
Рис. 2
Основное условие операции по восстановлению работоспособности распылителя это то, что в процессе обработки его иголки и корпуса надо, по возможности, восстановить изначальную линию контакта запорных конусов распылителя, сохранив при этом их гидравлическую плотность и уменьшить его гидравлическое сопротивление. Операция  тонкая, возможно кто-то считает, что выполнить её можно на станке HARTRIDGE (http://reforsbel.blogspot.com/2011/12/hartridge.html), я же считаю, что лучше это получается в "ручную". Это делается следующим образом.
.........................................................................................
......................................................................................... 
.........................................................................................
.........................................................................................
Операция шлифования иголки не занимает много времени, но требует ювелирной сноровки. При правильно выполненной процедуре шлифования происходит ............................................................................................................
.......................................................................................................................
.......................................................................................................................
Рис. 3
........................................................................  Высота подъема иголки и площадь её активного сечения практически не меняются, а точнее остаются такими же, как и на момент снятия форсунки с двигателя. Функции и ресурс распылителя восстанавливаются практически на сто процентов.
Метод проверенный. За последнее время были отремонтированы многие десятки форсунок (рис. 3) и не было ни одного случая отрицательного эффекта такого ремонта. Изначально, при проверке на стенде, форсунка может работать и не очень эффектно, но после небольшого периода эксплуатации, т.е. приработки, все становиться на свои места. Притом, если человек может сам снять и установить форсунки на двигатель, такой ремонт ему будет стоить значительно дешевле в отличие от ремонта с заменой распылителей. Тем более, что, как правило, при ремонте форсунок старые фирменные распылители заменяются не такими же фирменными распылителями, а дешевыми распылителями сомнительного качества, срок службы которых, по определению, значительно меньше чем у тех которые выбрасываются.

Распылитель у которого на торце иголки отсутствует упорный штифт нельзя отремонтировать по технологии (http://reforsbel.blogspot.com/2011/11/blog-post_24.html) используемой для ремонта распылителей с упорным штифтом. Иголку распылителя без упорного штифта для притирки к корпусу крутить, по определению, не за что. Однако, вернуть к жизни можно и такой распылитель. Мы нашли способ сделать тонкую притирку иголки без упорного штифта к корпусу распылителя, и в результате, при последующей коррекции пятна контакта названных деталей, распылитель начинает работать как новое изделие.

Тел. +375 29 6560658
E-mail: alekskrez@mail.ru